x_data = torch.tensor(list_data)
x_np = torch.from_numpy(np_array)
# retains the properties of x_data
x_ones = torch.ones_like(x_data, dtype=None)
# overrides the datatype of x_data
x_rand = torch.rand_like(x_data, dtype=torch.float)
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
torch.randn((), device=device, dtype=dtype)
torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)
list
np.array
tensor
,使其形状一样ones_like
:全一rand_like
:随机dtype
:更改数据类型或者一样shape
shape
可以是一个 integer
或者 tuple
或者 list
if torch.cuda.is_available():
tensor = tensor.to("cuda")
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
t1 = torch.cat([tensor, tensor, tensor], dim=1)
to
:转移 device 以及可以转换 dtype。
By default, tensors are created on the CPU. Keep in mind that copying large tensors across devices can be expensive in terms of time and memory!
索引:可修改的
注意 ...
表示省略并包含全部
Join tensors
cat
:不改变维度个数,在指定的维度进行合并stack
:在指定的合并维度增加一个维度排列